
WANL-PR-71-001 NASA CR-120818
DECEMBER 1971_ ~~~~~~~~~~

~~~~~~~~~~~~~~N3-1- 6562
(NASA-¢CR-l-2 OS 8 ) DEVELOPMENT OF ADVANCED 5
HIGH STRENGTH TANTALUM BASE ALLOYS.

PART 1: SCREENING INVESTIGATION Final \n
Report, oct. 1967 - 4 Jul. (Westinghouse Uc
Ele ctric Corp.) 68 p HC $5.50 CSCL 11F G3/17 54112

FINAL REPORT
DEVELOPMENT OF ADVANCED HIGH STRENGTH

TANTALUM BASE ALLOYS
PART 1 - SCREENING INVESTIGATION

BY
R. W. BUCKMAN, JR.

PREPARED FOR
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTRACT NAS 3-10939

NASA LEWIS RESEARCH CEN
jigEW > CLEVELAND, OHIO 441

P.E. MOORHEAD, NASA PROJE ¢M E

0 9 S MATERIALS AND STRUCTURE V

Astronuclear Laboratory
Westinghouse Electric Corporation

Westinghouse Electric Corporat Ion - P.O. Box 10864 - Pittsburgh, Pa. 15236



Astronuclear
(%~ Lahoratnry

NASA CR-120818
WANL-PR-71 -001

FINAL REPORT

DEVELOPMENT OF ADVANCED HIGH STRENGTH TANTALUM BASE ALLOYS
PART I - SCREENING INVESTIGATION

by

R. W. Buckman, Jr.

WESTINGHOUSE ASTRONUCLEAR LABORATORY
Pittsburgh, Pennsylvania 15236

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

December 1971

CONTRACT NAS 3-10939

NASA Lewis Research Center
Cleveland, Ohio 44135

P. E. Moorhead, NASA Project Manager
Materials and Structures Division

Cetails of illustrations in
this document may be better

Studied -rfh



Astronuclear
(J)Lahoratnry

FOREWORD

The work described in this report was performed by the Westinghouse Electric Corporation,

Astronuclear Division. Technical administration at the Astronuclear Laboratory was under

the direction of Mr. R. T. Begley while Mr. P. Moorhead served as the NASA Project Manager.

The period covered by the work described was from October 1967 through July 4, 1970.
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ABSTRACT

Five experimental tantalum alloy compositions containing 13-18% W+Re+Hf solid solution

solute additions with dispersed phase strengthening achieved by carbon or nitrogen additions

were prepared as 1.4 inch diameter ingot processed to 3/8 inch diameter rod and evaluated.

Elevated temperature tensile and creep strength increased monotonically with increasing

solute content. Room temperature elongation decreased from 20% to less than 2% as the

solute content was increased above 16%. Phase identification indicated that the precipi-

tating phase in the carbide containing alloys was Ta2C.
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1.0 SUMMARY OF RESULTS

Five experimental tantalum alloy compositions were prepared as 1.4 inch diameter ingot,

processed to rod and evaluated. The ASTAR-811C composition (Ta-8W-1Re-0.7Hf-0.025C)

provided the base and strengthening was achieved primarily by increasing the tungsten level

with rhenium content restricted from 1-2%. Compositions evaluated were within the range of

Ta-13W-1.5Re-0.7Hf-0.025C to Ta-16W-2Re-0.7Hf-0.025C. All five experimental composi-

tions were processed to 3/8 inch diameter rod by a combination of extrusion and swaging at

2550°F using unalloyed molybdenum as a protective cladding.

Tensile and creep strength increased monotonically with increasing tungsten content. The

room temperature ductility (28% elongation and 43% R.A.) of the Ta-13W-1.5Re-0.7Hf-0.025C

(NASVF-1) as recrystallized is similar to that of ASTAR-811C. However, increasing the solute

above 16-17% results in a significant decrease in room temperature ductility as evidenced by

the 2% elongation and R.A. for the Ta-16W-2Re-0.7Hf-0.025C (NASVF-2) alloy. The stress

for 1% elongation is 1000 hours at 2300°F was 24,000 psi for NASVF-1 (13W+1.5Re) and

32,000 psi for NASVF-2 (16W+2Re) compared to 15,000 psi for ASTAR-811C (8W+lRe).

Substitution of nitrogen for carbon results in significant improvement in creep properties at

2000OF and below where a nitride bearing composition Ta-13W-1.5Re-0.7Hf-0.03N (NASVF-3)

had a creep rate at 2000°F and 50,000 psi three orders of magnitude lower than a carbide

containing counterpart, Ta-13W-1.5Re-0.7Hf-0.025C (NASVF-1). At 2400°F, rapid over-

aging of the nitride precipitate resulted in reducing the creep strength below that of the

carbide strengthened alloy.

Solution annealing and aging experiments at 1800-2400 F for up to 1000 hours showed that

the carbide precipitate Ta2C undergoes pronounced morphological changes which could not

however be related to creep behavior. Further study of this area is required to resolve the

role of the carbide in the creep strengthening mechanism. Even though a significant strength

advantage over ASTAR-811C was achieved, the Ta-13W-1.5Re-0.7Hf-0.025C (NASVF-1) as

an electron beam welded joint that had been post weld annealed one hour at 3270°F exhibited

bend ductility at room temperature.

1



The three alloy compositions selected for scale-up as a result of the screening investigation are

Ta-14W-1 Re-O.7Hf-O.025C, Ta-16W-1 Re-O.7Hf-0.025C, and Ta-14W- 1.5Re-O.7Hf-O.015C-

0.015N. The melting and evaluation of these alloys as two inch diameter ingot will be the

topic of a separate report.

2
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2.0 INTRODUCTION

The primary objective of the work described in this report was the development of tantalum

base alloy(s) exhibiting higher mechanical strength than ASTAR-811C( 1 ) . ASTAR-811C

(Ta-8W-lRe-lHf-0.025C), developed under contract NAS 3-2542, is a fabricable, weldable

sheet alloy which has significantly better creep resistance than any of the commercially

available tantalum alloys such as T-111 and Ta-10W (1 '2 ) . The level of strengthening

additions to the ASTAR-81 iC composition was limited by fabricability and weldability

considerations. However, it was apparent during this prior investigation that relaxation of

the weldability criterion could result in higher elevated temperature strength alloys which

would be competitive with the high strength columbium modified TZM molybdenum base

alloy. It was with this purpose that development of high strength tantalum base alloys was

continued under contract NAS 3-10939. The alloy development was conducted in two

sequential phases. During the initial phase, five compositions were selected and prepared

as 1.4 inch diameter consumable electrode melted ingots which were processed to 3/8 inch

diameter rod for evaluation. The mechanical properties were determined and the results

used to select three additional compositions for more detailed evaluation as two inch

diameter ingots. This report will describe the results of the Phase I investigation. The five

alloy compositions* selected for study during Phase I were:

Ta-13W-1.5Re-0.7Hf-0.025C (NASVF-1)

Ta-16W-2Re-0.7Hf-0.025C (NASVF-2)

Ta-13W-1.5Re-0.7Hf-0.03N (NASVF-3)

Ta-16W-1 Re-0.7Hf-0.025C (NASVF-4)

Ta-15W-2Re-0.7Hf-0.025C (NASVF-5)

The hafnium and carbon levels of the above experimental compositions were fixed at that

level found to be optimum for ASTAR-81 1C. Strengthening was then to be achieved primarily

by increasing the tungsten content. Minor changes in rhenium content were also investigated

*All compositions given in weight percent although values for W, Re, and Hf are also
essentially same values in atom percent.

3



to further define an optimum composition range for this element. Rhenium was shown previously

to exert an effect on high temperature creep properties. The upper limit of substitutional solute

additions investigated was approximately 19% which would still result in room temperature

ductile tantalum alloys as discussed by Buckman and Goodspeed (3 ). The substitution of

nitrogen for carbon was also investigated since previous work had shown that nitride disper-

sions were more effective than carbides in improving creep strength below 2400°F(1 ). Although

nitrogen has a more adverse effect than carbon on the low temperature ductility of tantalum

base alloys, particularly as GTA weld bend ductility, relaxation of the latter criterion should

permit development of nitride strengthened bar and forging alloys superior to the carbide

strengthened counterpart.

4
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3.0 GENERAL EXPERIMENTAL PROCEDURES

3.1 AI loy Consolidation

The experimental alloy compositions were prepared as 1.4 inch diameter x 4 inch long ingot

using non-consumable and consumable electrode melting techniques. The second melt electrode,

3/4 inch wide x 24 inch long x 5/8 inch thick bar weighing 1900 grams, was prepared by

nonconsumable tungsten electrode d.c. are melting in a water cooled copper trough mold

under a 1/3 atmosphere of helium gas. Prior to melting, the chamber was evacuated <1 x 10
-

5

torr, leak checked and then backfilled with helium gas containing less than 5 ppm total active

impurities. To ensure a homogeneous final ingot, the 1900 gram charge was prepared as ten

(10) individual 190 gram charges weighed to within 1 mg. The ten charges were then equally

spaced along the length of the copper trough and multiple melted. Each bar was melted three

times on each side to ensure complete solution of each of the constituents. The trough melted

bar was then cast into a 1.4 inch diameter mold by vacuum consumable electrode arc melting

using a.c. power. The melt chamber was evacuated to <5 x 10
-

6 torr prior to arc initiation.

Double electron beam melted Ta-lOW and unalloyed W were used as melting stock. Procured

as 1/4 inch thick plate, the Ta-10W alloy and unalloyed tantalum were cold rolled to 0.04

inch thick sheet and then sheared to provide chips about 1/16 inch x 1 inch. Tungsten,

rhenium and hafnium additions were likewise chipped from 0.02 inch sheet. The highest

purity strip commercially available was used for all the alloy additions. Vendor furnished

chemical analysis of the starting materials is listed in Table 1. Carbon and nitrogen was

added to the alloy charge as -100, +200 mesh tantalum carbide (TaC) and dimetal tantalum

nitride (Ta2N) respectively.

3.2 Primary and Secondary Working

Each ingot was processed to 0.5 inch diameter bar by a combination of extrusion and swaging.

The top and bottom of the as-cast ingot were cropped and the side wall conditioned to produce

a 1.3 inch diameter x 3-1/2 inch long extrusion billet. The extrusion billet was then

5
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encapsulated in a 1.8 inch diameter arc cast molybdenum cladding which was sealed by

electron beam welding. The molybdenum clad billet was then heated by induction under a

flowing argon cover gas to 2550°F. After soaking at 2550°F for 10 minutes, the heated billet

was transferred to the container of a model 1220C Dynapak (HERF) and then extruded to round

bar through a zirconia coated die with a 0.940 inch diameter opening.

The molybdenum clad extrusion was cropped to remove the nose and tail sections and after

chemically cleaning, recrystallized by heating for 1 hour at 3000°F at 1 x 10 5 torr. The

annealed molybdenum clad bar was first heated above 1800°F in an argon purged retort.

At this temperature, the solubility of hydrogen in tantalum is <30 ppm. The heated bar was

then transferred to the hydrogen atmosphere furnace which was at 2500°F and swaging to

final diameter of 0.4 inch was accomplished in 10-15% reduction per pass. The temperature

of the bar was never allowed to cool below 1800°F and was reheated to 2500°F between

each pass. Swaging was continued until the diameter of the tantalum alloy wore was reduced

to 0.4 inches. Following swaging, the molybdenum cladding was chemically removed and

the as-swaged bar was sectioned for mechanical property evaluation and recrystallization

studies.

3.3 Mechanical Property Testing

Shoulder loaded round bar test specimens with a 0.1 inch uniform diameter gage length of one

inch were used for the mechanical property evaluations. Short time tensile properties were

determined at a constant strain rate of 0.05 in/minute. Elevated temperature tensile testing

was done at <1 x 10- 5 torr in a self resistance heated split tungsten element cold wall vacuum
-8furnace. All creep testing was done at <1 x 10 8 torr in sputter ion pumped units of the type

described by Buckman and Hetherington(4 ).

7



3.4 Heat Treatment

All heat treatments were performed in cold wall tantalum resistance heated vacuum furnaces
-5

at pressures of <1 x 10 torr. Prior to annealing all specimens were pickled in a solution of

equal parts of H 2 0-HF-HNO3to ensure removal of any contaminated layers. All annealing

specimens were then wrapped with 0.002 inch thick chemically cleaned tantalum foil to

further minimize any possibility of contamination.

8
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4.0 EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1 Melting

All five experimental compositions were satisfactorily consolidated as 1.4 inch diameter ingot.

A typical example of a trough melted bar and an as-melted ingot are shown in Figure 1.

Samples taken from the bottom portion of each ingot were chemically analyzed for the

intentional alloy additions and the results are listed in Table 2. Excellent recovery of the

alloy additions was demonstrated and all compositions were as intended with the exception

of the hafnium in NASVF-4 and 5 where it appears that double the amount was inadvertently

added.

4.2 As-Cast Microstructures

Typically the as-cast microstructure of the carbide containing alloy was two phase, containing

a carbide precipitate (Ta2 C) in a solid solution strengthened matrix (See Figure 2a). This

microstructure is very similar to that exhibited by as-cast ASTAR-811C ( 1 ). Dendritic freezing

gave rise to a rather pronounced cored microstructure in the as-cast ingot as illustrated in the

low magnification photomicrograph in Figure 2b. The room temperature hardness of the as-cast

carbon containing alloy compositions varied linearly as a function of the alloy content as

illustrated in Figure 3. The nitrogen bearing compositions Ta-13W-1.5Re-0.7Hf-0.03N

(NASVF-3) has a significantly higher hardness than the carbon containing counterpart

Ta-13W-1.5Re-0.7Hf-0.025C (NASVF-1), 417DPH, vs. 345DPH, and reflects the apparent

higher solubility of nitrogen in the alloy matrix. The microstructure of the as cast nitrogen

bearing composition appeared single phase when viewed optically at a magnification of

1500X.

4.3 Primary Working

All of the experimental tantalum alloy compositions extruded satisfactorily. The molybdenum

cladding remained intact and there were no evidence of extrusion defects. A typical

conditioned billet and molybdenum clad components are shown in Figure 4 a while the

9
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Table 2. Composition of Consumable Electrode Melted 1.4 inch Diameter Ingots

* All samples taken from bottom portion of ingot.

11

Nominal Composition, Weight % Analyzed Content, Weight %
(Ident. No.) W Re Hf C N

Ta-13W-1.5Re-0.7Hf-0.025C 12.9 1.6 0.68 0.024 0.0018
(NASVF-1)

Ta-16W-2Re-0.7Hf-0.025C 16.2 2.1 0.65 0.024 0.0021
(NASVF-2)

Ta-13W-1.5Re-0.7Hf-0.03N 14.1 1.5 0.59 --- 0.032
(NASVF-3)

Ta-16W-1 Re-0.7Hf-0.025C 15.5 0.98 1 .4 0.032 ---
(NASVF-4)

Ta-15W-2Re-0.7Hf-0.025C 14.5 2.2 1.1 0.028 ---
(NASVF-5)
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declad extrusion in Figure 4b illustrates the soundness and uniformity of the extrusion core.

All the billets were extruded in the as-cast condition. Since nitrogen bearing tantalum alloy

compositions have been shown to be responsive to thermal treatment,( 1 ) samples of as-cast

NASVF-3 were annealed for 2 and 16 hours at 2370°F and 2550 0F in an attempt to reduce the

as-cast hardness by overaging the nitride precipitate. The as-cast hardness of 417DPH was

only reduced to 406DPH after each of the heat treatments, thus NASVF-3 was extruded in

the as-cast condition.

The reduction by extrusion was 4:1 and was accomplished at 2550°F which is approximately

0.5T of the alloys. In all cases, the as-extruded microstructure was typical of a worked
m

material, i.e. elongated grains parallel to the working direction, (See Figure 5a). However,

the room temperature hardness of the as-extruded material was only <10% of the starting

hardness (See Table 3). This would tend to indicate that a significant amount of recovery

occurred during and after extrusion. One hour at 3000°F was sufficient to cause recrystalliza-

tion of the as-extruded microstructure as shown in Figure 5b.

The primary purpose of the primary hot working operation is to promote homogenization of the

cored as-cast microstructure. Examination of samples from the tail end of the Ta-16W-2Re-

0.7Hf-0.025C revealed evidence of the as-cast microstructure in the as-extruded condition

(Figure 6a) and after recrystallizing 1/2 hour at 3000°F (Figure 6c), one interesting feature

noted upon examination at 1500X was the presence of a discontinuous precipitate (Figure 6b)

in the as-extruded microstructures. This was not observed in the as-cast samples examined,

thus it may be assumed that it formed during the extrusion operation. During the subsequent

recrystallization anneal, the lamellar precipitate appears to be breaking down (Figure 6d).

Discontinuous precipitation has been observed in the base metal and weldments of ASTAR-811C ( 5 )

subjected to extended aging times. Evidence of this precipitate was not observed during the

initial development work in ASTAR-811C ( ) and when observed for these alloy compositions, it

was at first thought caused by the higher tungsten content. However, this has been shown not

15



Table 3. Room Temperature Hardness of Experimental Tantalum
Alloys in the As-Extended and Annealed Condition

16

i~~~~~~~~~~~~~~

0-~~DPH, Kg/mm2

Annealed 1 hour
Compositior)/ldent. No. As As-Extruded at 3000°F .

Cast Nose Tail Nose Tail

Ta-13W-1.5Re-0.7Hf-0.025C/NASVF-1 345 401 390 346 342

Ta-16W-2Re-0.7Hf-0.025C/NASVF-2 427 - 433 --- 398

Ta-13W-1.5Re-0.7Hf-0.03N/NASVF-3 417 446 414 410 387

Ta-16W-1 Re-0.7Hf-0.025C/NASVF-4 393 421 418 393 374

Ta-15W-2Re-0.7Hf-0.025C/NASVF-5 397 431 419 395 377
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to be the case as illustrated in more detailed examination of ASTAR-811C. ( 5 ) The sequence

of events which lead to the discontinuous precipitate are not well understood.

4.4 Secondary Working and Recrystallization Behavior

The as-extruded bar was recrystallized with the molybdenum clad intact and then was hot

swaged to final size. As extruded, the alloy core diameter eas approximately .7 inch and

the final as-swaged diameter was .44 inches, a reduction in area of nominally 60-65%. The

bars were heated to 2500°F for swaging, and reductions of 10% per pass were taken until the

final diameter was reached. Between each pass, the bar was reheated to 2550°F. Heating

for swaging was accomplished in a hydrogen atmosphere furnace. Prior to insertion into the

hydrogen atmosphere furnace, the bars were heated to 1800°F in an argon atmosphere furnace.

This procedure did not result in any adverse effects on the workability as all five compositions

were satisfactorily worked to the required final diameter.

As swaged, the microstructure was typical of a worked microstructure. Formation of equiaxed

grains occurred in the carbide containing compositions after heating for one hour at 2900 -

3100°F. The one hour recrystallization behavior of the experimental tantalum alloy is

summarized in Table 4 and illustrated in Figure 7. Also included in Figure 7 for comparative

purposes in the recrystal I ization curve for ASTAR-811 C. Since the high strength tantalum

alloy compositions were hot worked, significant recovery occurred during the working

operations and interpass annealing operations and is reflected by the modest-change to the

as-swaged hardness as the annealing temperature is increased. In contrast, the curve for the

cold worked ASTAR-811 C shows a significant reduction in as-worked hardness as the annealing

temperature is increased. The variations in the shape of the isochronal curve for the carbide

containing compositions most probably reflects uncontrolled differences in cooling rates from

the annealing temperature and this would affect the amount of carbon retained in solution.

Carbide solutioning for the experimental compositions occurred at 3630°F and is similar

to that for ASTAR-811C. The hot swaging and recrystallization anneal was sufficient to
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Figure 7. Recrystallization Behavior of As Swaged (60-65%) Tantalum Alloy Rod
open symbols - wrought microstructure

partially closed symbols- partially equiaxed microstructure
closed symbol - 100% equiaxed microstructure

21

E
E

0

vy

£
C:.

300

250

200
As 

Worked



remove all evidence of the prior as-cast structure that persisted in the extrusion of the

Ta-16W-2Re-0.7Hf-0.025C (NASVF-2) composition (See Figure 8 and Figure 6).

The recrystallization behavior of the nitrogen bearing composition, Ta-13W-1.5Re-0.7Hf-

0.03N (NASVF-3) did not differ significantly from its carbon containing counterpart (See

Table 4 and Figure 7). The only exception was of course that the hardness level of NASVF-3

remained about 50DPH units higher than NASVF-1. As swaged, the microstructure of NASVF-3

was two phase and a fine nitride precipitate was observed. After annealing at 3630°F, the

nitride precipitate was returned to solid solution and was not observed when viewed at 1500X

magnification (See Figure 9). The isolated precipitates seen in Figure 9b are most

probably oxides.

4.5 Mechanical Properties

4.5.1 Tensile Properties

Tensile properties were determined at room temperature, 2000, and 2400°F for each of the

experimental compositions. Prior to testing, each specimen was annealed for one hour at

3300°F. This final annealing temperature was selected since results of the recrystallization

study on the as-swaged rod had indicated that this treatment produced a uniform recrystallized

grain size of 0.04 mm. Annealing for one hour at 3000°F did not always result in a completely

equiaxed microstructure and annealing at 3600°F resulted in a large grain size (0.09 mm).

The tensile data for the advanced tantalum alloy compositions are summarized in Table 5.

Tensile yield strength at R.T., 2000, and 2400°F and room temperature elongation are plotted

as a function of total solute content in Figure 10. It is apparent from this plot, that increasing

the substitutional solute content of a Ta-0.025C matrix above 16-17% results in a decrease in

the room temperature ductility. Although the elevated temperature strength is increasing

monotonically with increasing solute content, a trade off in elevated temperature strength

must be made in order to retain room temperature ductility since low temperature ductility is a

prime feature of tantalum base alloys.
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a) As Swaged b) 1 Hour at 2550 F 

c) 1 Hour at 3270 F d) 1 Hour at 3630°F 

Figure 8. As-Swaged and Annealed Microstructures of 
Ta-16W-2Re-0.7Hf-0.025C Rod. Mag. 200X 
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a) As Swaged b) 1 Hour at 3630°F 

Figure 9. Microstructure of Ta-13W-l .5Re-0.7Hf-0.03N (NASVF-3) 
Rod in the As-Swaged and Solution Annealed Condit ion 

1500X 

24 

Ta-13W-l.5Re-0.7Hf-0.03N


Astronuclear
\) Lahoratnry

-0 x CY ) I I I I C o Y I CV)I
cO I I I I II 0"1) I 1 I

'4-._

0 -

*U @ Ua)O O C Olsu q O,
r 04 -0 viLO CN 0 'O NO N N4 00 N0 "it O N

A @.C ~~~~to to LO_ 10 LO

O 6C

00 ~ ~ (0

_. c ^0O' r O)O ' 
° No..O 000% 0O N. ' oo00 .Oo

U) 0.2... 'PLC) ' ' -C r %J-0 L)C) %OLC)

E 

0L- cO .-Q NO 0 0s
O .2o "t 8O8N 8880' c8 V8

X C ) -00 0 -L 0 cc 0cor-.o 0 N 0c0 r cDo a
E a O,0 co 0 ,c? so c~ c tCoNq OcN

0 E

4- 0) -,00C L C N , c~0

.o c

o ~_ c .". - ---.
-0 O0) O0

o -o * 8 o o, ._ 8o a o a __

0) 0
.0 -1 . N CS N a N N 0 C.N CN tY N

0. 4-4- 0- 4 t--N

I- o .ooC
~~~~~~~0-8

-0 00)

0 o I _ 0 000 000 0
P- in E u 1-: C> 0 C) . CI OC 00DO N C 'I It 0N

0 . N' -, - - - -

o- 0 ,O t-o

>< C;> >. >>_) - ;

t o %o <%o< 

0~~~~~~~0 1

'~o Uo
O oO oO OO {DO OO

U - i> F-m~ -i a N' C

C

eCV

Ct)

0

4-

Z.

".° C 
U 0

O. ~ O

0 

I .. 0
0 E
- %4

E O

4-- 4

'~~~~~-
_ 0 0s

_ C o 0.

Q 20 0 _

>. 'V)

U) 0 o

30- Q- -

Q -U

0Q 0 0 *~

CL

0 _
_ v a

25



NOIIVON013 %

0m~ 0
(N4

0 0

o 0 0
Cf) 03 C%L 1O NJCJ1S I to

Hi©N3NiS 013191 135~O %Z'0

0

co ,0

Co
0.

0

ILL
0

o h(L

co

00

o I

I I (0

0 00-r-

-o

O O-<

c*-

.)

OA < 

LfU

I 

LLI

I-=

0

- -<

,.

0 0 =~

o o

-4

< >u

0 e°

03

co-I

CI

.3)

10 .i~~0 c

.4--

'nI

LE

~4- 44-
LU 0

C) C;~~0

U-

26

L)0o 0

0
0
CN



Astronuclear
Laboratory

Substitution of carbon in the Ta-13W-1.5Re-0.7Hf-0.25C (NASVF-1) with an equivalent

amount of nitrogen results in a significant strength increase at room temperature but only a

minor improvement at elevated temperature (See Figure 11). The most noticeable effect

was on elongation where the nitrogen bearing composition exhibited significantly lower

tensile ductility over the entire test temperature range.

4.5.2 Creep Properties

The limited amount of material processed for each composition allowed only two creep speci-

mens per alloy. Thus stress change creep testing was utilized to maximize the characterization

of the time dependent deformation. The creep behavior of the experimental tantalum alloy

compositions is summarized in Table 6 and the data are plotted in Figure 12. Prior to creep

testing, specimens were annealed either at 1800°C or 2000°C. As noted earlier, formation

of a completely equiaxed microstructure was not generally observed until after a one hour

anneal at 1800°C. During the development of A-811C, annealing at 2000°C gave a

significant improvement in creep behavior.

The creep rate of the carbide strengthened experimental compositions did not appear to

significantly differ whether the final annealing treatment was at 1800°C or 2000°C. For

example, the Ta-13W-1.5Re-0.7Hf-0.025C (NASVF-1) after annealing 1 hour at 1800C

and tested at 50,000 psi and 1850°F resulted in a creep rate of 0.00 1%,/hour. The specimen

was removed from the test unit and then reannealed for one hour at 2000°C and then retested

at 1850°F and 50,000 psi. The secondary creep rate (is) was 0.00065%/hour which is not

significantly different for that exhibited by the 1800°C annealed specimen.

The Larson-Miller representation of the data in Figure 12 was plotted using time to elongate

1% as the time parameter, and this was calculated from the steady state creep rate. For a

given stress there was generally a significant spread in the values of Larson-Miller parameter

as the temperature was varied thus indicating a change in the rate controlling mechanism.

Values for activation energy were calculated from the temperature change data and the

27



o S a-13-1.5e--07Hf-3II

0 * Ta-13W-1.5Re-0.7Hf-0.03N

O * Ta-13W-1.5Re-0.7Hf-0.025C

Read right

2000 2400

Test Temperature, F

Figure 11. Effect of Nitrogen Substitution for Carbon on Strength and Ductility
of Ta-13W-1.5Re-0.7Hf-0.025C Alloy

28

200

150 -

100 -

.X

.0
C

-0
Q)

0

CN
6

50 -

0

30
0

0

o--

0)
Cc
0

LU

20 O

10

0
R. I .

I

;T,



__) _Astronuclear

Lahbratorv

._0 CN '0O D ) OO % 'O No 0 0 Ng O! Cl 1N 1 1 |t C'l O' "1

L- CY "It "Iss t 14, Lo wm |wwNt

CL

_ .

0)

O o0 0 ' o0 'C0 N LO a, 0 I I o o ' , Lo I I Q o OD a-_

o.

._ 0 0 r -) 00 o 0 I I 0 "I 0 I 00 c-

E 0- -O L I )mc I O,0 - I 'O ( I IN ,--

I-o~ N .-. o '~°00 L8
o- LLO oc'O'O -O -ON4 O. o . .oIo .-- , .1 r O-

O a-N Ooo,--L O' 0 O0 O 00 OOO..

O~~~~~~~~~~~~~~~C O °0 00. 00 o 0 00 00 0 000 000

' .2

6ddd ddcdd d ddd ddd dddd dddc

0

..- o - ,oCoo ,o ',-C o',- ,o C o o o Coo o

CC'I) LC"'LO - -L C> o c a LO a ,NLN 

0)0 .- . ..-

O C 000 0000 0 00000 000 0000 0000 ~ 00)0 0 >000 0 0 0000-- 0 0 0 00 0> 0 0 

'~1 C%1 It ) CDm ,0 ',0 O ' C C O('' O CO )C ~C 0a > 

00 0 000 0 00000 C ~)o o 000 000C~0 000) > 
V) LO LOLO CO CIO CY) C) LO) LOLO L OLO CY) CY)m' LO LnLO Lo c Co CY)C'

0 E ° N CN CN cN C _ -_ CN CN 0CN CN Cl 0__ CN )CN
F- E

(-

C

0

n .¢ .o 0

c.2

C' 2(. UO U0 1 u 0 O
o ~-0 I0 00 o Z0 0 o Z . 00

~.) 0 00U 000 LU 000
a-C - - - ("4~~~~~C (% V) Y

ULC 0 Z

L~~~~~~~~~~~~~~~~L V.1 101 i Cr . C
00 oooo

(%1 ,--'.- - ~ ~ 1 C', eqC~ ,,- o
-- E --- ') l) V

0 

o C; Z 0,02v Z 

29

0

o
o
0

0

0

CL

'A

>1

0

0
U)

E

.4--

_c
a

Q

C

0

L-
o

CL
0

L4.

0

L-

a-

I--

(1)

co

(D0

a-

0,,

U

'0

0

0

O-



00 C 0 0o. CY) t~o LO C'' N roLCO)SO O CC

s-J

0)
..3

00O ,4-'0,%(C)C

~~o c~.oC10CO - Oo -EoujO' 00 0C.
-0 CV) 0-00i -% C~Oo .-.... 4

c;66oc66 ~dc dd~cdoo ~..dddddc cddd

0

0 (D 0 00 % It 1 (NO w) ~ 0 

CO oa '1-- 0 0"
A-- a .-. - --- -0 0:33 N W) N J OD C %

0,- rL 
n- LO OD ,_. t ~,

0)
~~ E-~ 00O~r)C%4Lg- CN 00C OD 04 CN 0 E sC L 004 0'Jl C C-J; - 0 % 6 c

a 0 C) 0it0u C~4r C0 ~
000000 00 QQ-. 000000 CO
-0 0 000D C>0 a 000 0000

Co aoooo 0 0 00~ 

a, C 000008 a00

_--

0 0.0 -2 0(D 'JC' (NC% -ci0 (Q(J% C0JC'

0

II-I

C2

-0

00 
u

V):0 I > II IU U U
'z 0'o, ,,.,

o ~~tZ> 4- > ~>,,
U" 'X. '.: ,k 0

v I-- I ~ I'-~~~

30

0

C

S._
az0

0

0)

0

UX

I-

0
o

E

0_

a.

G)

0

(-

cn

0

0

o

(D

E

em

5I-

CD

0
0.i

C
0

5-
0

6..
0
L-
o

0

0

a-

f,)-
O

em

>6

G)

I--



0 0

N- C~)o co
CN 0o

u 00 @ oc o

0 N

0)00
-C
o a- _-

c D
u 0 0

-C -C
0, 

a- -0
4- 0 0

o o 0)a-- -0D0 0
0C 0 0
E c C
0D 

a3
0

4-

0

-

0)

d -

U

0 0

Vlo 

0 4- 4-

o o-D

o oo

o o .C

to
U)

a-
0

0

4-

0

-o

a
D

0
a-

0
E
U
0
0-

Ln

0

0
0Cc

0

CL

E

Eo

0

4- _

U

E -4

0
I-

0

·o
0

G-
4-

E
0

._ 0

X-o~

-c 0 LLn

a oPo

o e
a 4-

_ _- _ _

o .o U -a a 4-. 0) ..c v

_ _~ _ _ _ _ _31 _

31

Astronuclear
( ) Lahoratnrv

-
0

._

0
s-

o

co

-0
0
0

0

x

U)

0

E

._

0
a-

CD

co

0

I.-

c

0

o
9

a-

CD

0
0~

x
4-C
0

a-

0
a-

0

a)4-
0
z



I I I I I

.- I I I I I 

I >

>-

Z <

U z
oq u

0 o
Io

I-

1
I

I ,C

C" '0

I II- a

-.. c

< 4 4, 0 
)..- 4, 0 cC")LA Q o c -
< ° o 00

I ) w 

I I

> LA LALn > >
z< L V)

z z

UU
00 04
'-0 0~

I' I
oN w

0 -| -

uI I 

00
_- _- _

' I I I ' ~~~I I I I I I

0

O'

., 0

0 C

0N x a O

,_ OO

0 -

E

+ C It

o

it, 4, Q

o. U

~~~~~~~co;D-

0 4, 4

~~~O)

._.

_ C

,0

o ~ o

~~~~~~~~~~S'-

n a~~~~~~~S

n ~~~~~~~~~._

o o 0 0 0 0o 0 0 0C 0
0 0 0 0 0 0
dd666 6 6 c dco N '0 tn Nr c'

T rI I !-i- Le)

U)

CN
Ln

/
/

.

I

6

I
/

!
/

!

U-

00

. 0
- .- C'

<-0 ~

-t -,

CO A 

0 o

0 00 00 0
0c LAC> t

O
0
0
O
O

!sd 'ssa4S

32

L. iI I I i

o~ o o~ oo o s 0 0
C6 .l 06F



Astronuclear
-,,~)Laboratory

values ranged from 25 to 192 kcal/mole. The activation energy for self diffusion for tantalum

is accepted as 110 kcal/mole. (6 ) Generally the segments of the creep curves at the various

temperature levels after the initial condition were linear. However, it is difficult to ascribe

physical processes to each of the values of activation energies calculated and may reflect

more the limit to which the data may be interpreted. At 1850-2000°F, protracted transient

creep was observed (See Figure 13), while at 2400°F, the typical concave upward creep curve

was seen. From Figure 12, it is apparent that the advanced tantalum base alloys are signif-

icantly superior to A-811 C as far as creep properties are concerned. All of the creep data

for A-811 C was determined on sheet. ASTAR-811 C 3/8 inch diameter swaged rod was

annealed for one-half hour at 3600°F and tested at 30,000 psi at 2000°F and 2100°F. The

resultant creep curve is shown in Figure 14. The primary creep stage existed for approximately

two hundred hours after which the rate was linear. Increasing the temperature resulted in an

order of magnitude increase in creep rate. The creep rate was linear for the eighty hours at

2100°F. Although not shown in Figure 14, the temperature was reduced to 2000°F and linear

creep was observed for approximately 400 hours at which time the test was terminated.

Initially at 2000°F, the i was 0.00125%/hour and after increasing to 2100°F and return to

2000°F, the i was 0.00148%/hour and is essentially unchanged over the original thus

indicating little influence of the exposure at 2100°F. The creep rate data were used to

calculate values for L-M parameter and are included in Figure 12. Extrapolation of the

ASTAR-811 C sheet data coincides with the round bar data indicating little influence of

working history.

Creep strength of the carbide strengthened alloy compositions increased monotonically with

solute content as illustrated in Figure 15. However, as noted earlier, there is a significant

decrease in room temperature ductility as the solute content exceeds approximately 16% W+Re.

Previous work had shown that rhenium had a potent effect on the creep behavior of tantalum

base alloys. Compositions NASVF-4 and NASVF-5 were identical and each contained 17%
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Substitutional Solute, atom %

Influence of Solute Content (W+Re+Hf) on Creep Properties and Room
Temperature Elongation of Experimental Ta-W-Re-Hf-O.025C Alloys
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W+Re. NASVF-4 contained 15W+2Re while NASVF-5 contained 16W+lRe. Examination of

the creep data in Table 6 indicates that both alloys are similar and at least at this solute

level, the range for rhenium does not appear critical.

Although substitution of nitrogen for carbon did not greatly alter the elevated temperature

tensile strength, significant effects were observed on creep properties. The effect of nitrogen

substitution for carbon on the creep of tantalum alloy composition is illustrated in Figure 16.

At 50,000 psi at temperatures up to 20000 F, the nitrogen bearing alloy has a definite superi-

ority over the carbide counterpart. In addition to extremely low creep rate, loading strain

was significantly less and transient creep was not observed as it is with the carbide containing

composition. At 2400°F, the nitrogen containing alloy exhibits a superiority initially but

this advantage is short lived as the nitride overages and the creep rate increased. As the

test temperature was lowered, the nitride strengthened alloy had a higher creep rate ('-2X)

than that of the carbide bearing composition.

Significant improvement in the creep properties of tantalum base alloys have been achieved

by increasing the solute content. A comparison of the creep strength of the experimental

tantalum alloy compositions with A-811 C, T-111, and the columbium modified TZM alloy

is shown in Figure 17. At temperatures above 2200°F, the experimental tantalum base alloys

are clearly superior to the Cb modified TZM, even on a density compensated basis.

4.6 Response to Heat Treatment

A carbide strengthened composition, Ta-16W-2Re-0.7Hf-0.025C (NASVF-2), and a nitride

strengthened composition, Ta-13W-1.5Re-0.7Hf-0.03N (NASVF-3) were subjected to solution

annealing and aging treatments to study their response to thermal treatment and the stability

of the precipitating phase. Samples 0.25 inch diameter x one inch long were wrapped in

tantalum foil and solution annealed at 3600 F for one hour at 1 x 10 torr. The specimens

were rapidly cooled by introducing helium gas into the furnace chamber. The time from
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Figure 17. Creep Properties of Refractory Metal Alloys
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3600°F to black heat required approximately 90 seconds. The solution annealed samples

were cut into 1/4 inch thick samples, wrapped in tantalum foil and annealed for 1, 16, 100,

and 1000 hours at 1800°F, 2000°0F, 2200°F, and 2400°F. The one and sixteen hour anneals

were done at 1 x 10
-

6 torr, in an oil diffusion pumped system while the 100 and 1000 hour

exposures were at <1 x 10
- 8

torr in a sputter ion pumped UHV system.

The room temperature hardness values taken on each of the heat treated samples are tabulated

in Table 7 and presented graphically in Figures 18 and 19. The shape of the isothermal

hardness curves for the carbide containing composition (See Figure 20) indicate that the

solution annealed condition exhibited the highest hardness value and subsequent aging at

1800-2400°F resulted in a hardness decrease. The hardness peak after 1 and 16 hours at

2000°F is not readily explainable since metallographic examination and identification of

the chemically extracted precipitates did not give any clue to this behavior. With this

exception, the aging response of the carbide containing alloy was similar to that observed

for ASTAR-811C and carbide compositions containing nominally 8-10% W+Re with <1%Hf.(1)

No apparent correlation between the room temperature hardness and elevated temperature

creep properties was observed. Although the hardness at 1800°F had reached a minimum

value after approximately 100 hours, there is no indication from the creep curve that there

is any metallurgical reaction occurring which is significantly altering the creep strength

(See Figure 14). Thus identification of the role of the carbide in promoting elevated

temperature creep strength is still unclear.

The nitrogen bearing composition was solution annealed at both 3200°F and 3600°F prior

to aging and the response to the subsequent aging treatments was similar for both materials

indicating that the nitrogen values for the alloy had been exceeded at the lower solution

annealing temperature. As was shown in a previous study, ( ) the nitride precipitation

kinetics are much more sluggish than for the carbide. The nitride precipitate strengthening

follows classical age hardening behavior(1) and the strengthening, both tensile and creep

appear to be controlled by the kinetics of the precipitation process. For example, at 2400°F,

40



( Astronuclear
Laboratory

Table 7. Room Temperature Hardness of Ta-16W-2Re-0.7Hf-0.025C (NASVF-2)
and Ta-13W-1.5Re-0.7Hf-0.03N (NASVF-3) After Solution Annealing
and Aging(a)

Composition-
Solution Annealing Aging Time DPH, Kg/mm 2 , After Aging at

Treatment/R.A. Hardness (hours) Indicated Temperature F

NASVF-2 1800°F 2000°F 2200°F 2400°F
1 hour at 3600°F/ 1 363 401 358 339

16 348 376 333 336
427DPH 100 349 325 323 330

1000 318 325 329 328

NASVF-3 1 386 388 388 414
1 hour at 3600°F 16 415 412 410 405

100 422 375 386 361
408DPH 1000 445 346 336 314

NASVF-3 1 402 413 408 407
1 hour at 3200°F 16 405 401 406 406

100 393 381 385 359
394DPH 1000 438 371 337 317

(a) Solution Annealing, one and sixteen hour aging treatment as <1 x

100 and 1000 hour aging treatments at <1 x 10-8 torr.

10- 5 torr;
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Figure 19. Aging Response of Experimental Tantalum Base Alloy
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overaging of the nitride precipitate occurs in a relatively short time ( 100 hours); Examination

of the creep curve in Figure 16 shows that there is an increase in creep rate occurring with

overaging. The overaged non-coherent nitride precipitates are not as effective a strengthener

as the carbide upon reduction of the test temperature as also shown in Figure 16.

Metallographic examination of the solutioned annealed and aged samples of NASVF-3 revealed

that the solution annealed specimens were single phase when viewed at 1500X. The micro-

structures of the heat treated nitride strengthened composition NASVF-3 are shown in Figure

20. They were essentially single phase after aging for times up to 100 hours at temperatures

up to 2200°F and corresponded to room temperature hardness values of approximately 380DPH

and above. This would indicate that the HfN precipitate is submicroscopic and coherent

with the lattice and agrees with prior reported work ( ' ) . The optically resolvable precipitates

appear coincident with a drop in hardness below 360DPH.

As noted earlier, there is generally a decrease in hardness as the solution annealed carbon

containing composition, Ta-16W-2Re-0.7Hf-0.025C (NASVF-2) was exposed over the

temperature range of 1800-2400°F and conforms to the behavior exhibited by ASTAR-81 1C(1)

The exception being the hardness peak at 1 and 16 hours at 2000°F. The microstructure of

the NASVF-2 after solution annealing was essentially single phase when viewed optically

at 1500X (See Figure 21a). There was however significant morphological changes in the

precipitate occurring after the various time-temperature exposures (See Figure 21). The

precipitate was chemically extracted using a bromine-tartaric-methanol solution and the

residues were analyzed by x-ray diffraction. For each specimen examined, the dimetal

tantalum carbide was found and agrees with phase identification work reported under

contract NAS 3-2542. (See Table 8).

The instability exhibited by the carbide precipitate would tend to indicate that it should

not be useful as a creep strengthener. However, as noted earlier, the creep curve at 1800-2000°F

for carbide containing compositions did not show any perturbations indicative of metallurgical
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Table 8. Effect of Thermal Treatment on Composition of Precipitate
in Ta-16W-2Re-0.7Hf-0.025C (NASVF-2)

* Powder residues exposed

a = 3.107 A
0

C
0

in a Siemens 114mm camera Cu K, radiation

= 4.944 A

C/A = 1.591

50

Prior Treatment X-Ray Identification of
Precipitate

1) 1 hr at 3600°0 F Ta2C

2) (1) + 1 hr at 1800°F Ta2C

3) (1) + 1 hr at 2000°F Ta2 C

4) (1) + 1 hr at 2200°F Ta2C

5) (1) + 1 hr at 2400°F Ta2 C

6) (1) + 16 hr at 2000°F Ta2 C

7) (1) + 100 hr at 2000°F Ta2 C

8) (1) + 1000 hr at 2000°F Ta2 C

9) (1) + 1000 hr at 2400°F Ta2 C
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the effectiveness of carbon in improving creep strength has been demonstrated. ( )

To evaluate the effect of the prior thermal history, room temperature tensile properties were

determined on specimens that had been creep tested and the data are in Table 9. With the

exception of the ASTAR-811 C, significant reductions in tensile strength and elongation were

observed. Since during elevated temperature exposure carbide precipitation results in a

decrease in room temperature hardness, a reduction in room temperature tensile strength

would be expected. However, the reduction in tensile elongation for the Ta-13W-1.5Re-

0.7Hf-0.025C (NASVF-1) was not expected. The post creep test microstructure of the

Ta-13W-1.5Re-0.7Hf-0.025C (NASVF-1), Ta-16W-2Re-0.7Hf-0.025C (NASVF-2) and

ASTAR-811 C (Ta-8W-1Re-0.7Hf-0.025C) were similar and the typical microstructure is

shown in Figure 22. The microstructure shown is for specimens tested over the temperature

range of 1850-2100°F and consists of a relatively clean matrix with massive carbide

precipitates at grain boundaries. The same precipitate morphology was observed for

ASTAR-811 C, however, the room temperature tensile elongation of ASTAR-811 C was

virtually unaffected by the prior creep history. (See Table 9). Examination of the brittle

fractures showed them to be mixed with fractures occurring by a combination of transgranular

cleavage as well I as along the grain boundary carbide phase (See Figure 23). The reason for

the reduction in tensile ductility for NASVF-1 may have been caused by damage during

creep testing; (i.e. formation of voids or cavities) however, none were observed metallog-

raphically at 1500X. This mode of damage was observed for the nitride strengthened com-

position NASVF-3 and readily explains the strength and ductility changes for NASVF-3

creep tested at 2400-2200oF prior to room tensile testing (See Table 9). The NASVF-3

specimen tested at 1850-2000°F showed that aging occurred during creep testing since the

hardness increased from 399DPH as annealed to 449DPH during creep testing and the

ductility and strength change most likely occurred as a result of an upward shift in the

ductile to brittle transition temperature.
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Table 9. Room Tensile Strength of Carbide and Nitride Strengthened
Tantalum Base Alloys After Creep Testing

Composition Thermal Treatment 0.2% Offset U.T.S. % Elong. Hardness
Yield Strength psi psi Unit Total DPH

Ta-13W-1.5Re- 1 hr at 3270°F 118,600 139,900 14.3 28 346
0.7H f-0.02.5Co0.7Hf-0.025C 1 hr at 3270°F

(NASVF-1) + 25 hrs at 24000 F
+ 142 hrs at 2300 0 F 105,900 106,800 0.5 0.5 299
+ 163 hrs at 2250 F
total creep strain 2.68%

1 hr at 3270 F +
25 hrs at 2000°F + 329
hrs at 1900°F + 144 hrsat 18500 F + 1 hr at 36300F 113,000 113,000 0.9 0.9 290

+ 430 hrs at 1850F F
total creep strain 4.60%

To-16W-2Re- 1 hr at 3270 0 F 170,000 172,000 1.8 1.8 410
0.7H f-0.025C 

(NSF-02) 1 hr at 3630 F + 160 hrs
(NASVF-2) at 1850F + 144 hrs at

1900°0F + 170 hrs at 1950°F'7900°F + a1720 hrsat 1950F 82,600 82,600 0 0 328
+ 228 hrs at 20000 F I
+ 298 hrs at 2050 0F
total creep strain 1.34%

1 hr at 3630 F + 364 hrs
at 2400 0F + 258 hrs at 117,000 117,600 .3 .3 338
2350°F total creep strain 2.03°/

Ta-8W-lRe- 1 hr at 36300F 90,000 105,000 15 22 262
1 hr at 3630 F + hrs at

(NASV-20) 2000 0 F + hrs at 2100°F
(ASV-20 I h o+ hrs at 2000F 78,300 90,700 18.8 231

total creep strain 2.50%

Ta-13W-1.5Re- 1 hr at 3270 0 F 160,000 166,000 15.7 16 399
0.7H f-0.03No0.7Hf-0.03N 1 hr at 3270°F + 500 hrs at
(NASVF-3) 18500 F + 480 hrs at 1900 + 22

hrs at 1950°F + 292 hrs at 154,500 154,500 0 0 449
2000°F total creep strain .48%

1 hr at 3270°F + 290 hrs at
24000 F + 170 hrs at 2300OF +
20F165 + hrs at 23250F +100,400 100,400 0.1 0.1 357
total creep strain 3.72/% 
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Figure 22. Microstructure Representative of Post Creep Tested NASVF-1 , 
NASVF-2and ASTAR-811C 
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1500X 

Figure 23. Photomicrograph Near Room Temperature Tensile Fracture Showing 
Crack Propagation by Transgranular Cleavage and Along Grain 
Boundary Carbide Precipitate for Ta-13W-l .5Re-0.7Hf-0.025C 
(Specimen NASVF-18-1C See Table 9 for Prior Thermal Strain History) 
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4.7 Chemistry Stability

The carbon content of selected samples was determined to evaluate any chemistry change

resulting from the various thermal treatments. Decarburization has been shown to occur for

ASTAR-811 C sheet, 0.035 inch thick when exposed to temperatures above 3400°F at pressure
-5of nominally 1 x 10

-
5 torr. All of the round bar specimens analyzed did not show any

significant change in carbon (See Table 10) as a result of the various thermal treatments.

Since decarburization occurs by methane and CO reaction, and is controlled by the rate

of arrival of reactants to the surface, it would be expected that the rate of decarburization

would be less for round bar than for thin sheet since the sheet would have a much greater

surface area to volume ratio.

4.8 Weldability

ASTAR-811C (Ta-8W-1 Re-0.7Hf-0.025C) exhibits good GTA weld ductility coupled with

good creep strength. Although the advanced experimental alloy compositions were designed

to increase strength at elevated temperature, moderate ductility was exhibited by electron

beam welded Ta-13W-1.5Re-0.7Hf-0.025C alloy (NASVF-1). A 0.25 inch diameter rod was

annealed one hour at 32700F and a circumferential weld was made. Parameters were selected

to achieve penetration to the center of the rod. Specimens were then bend tested at room

temperature. In the as electron beam welded condition, brittle fracture occurred upon

bending. However, after annealing for one hour at 3270°F, a ductile bend could be made

(See Figure 24). The weld ductility is quite remarkable in view of the fact that the alloy

contains 14.5 atom percent W+Re in addition to the hafnium and carbon.

55



Table 10. Carbon Content of Carbon Containing Alloys Solution Annealed at 3630°F
for 1 Hour and then Thermally Exposed for Times up to 1000 Hours at
Temperatures up to 2400°F (a)

Carbon
Composition Specimen Configuration and History Content

(%)

(1) Ta-13W-1.5Re-0.7Hf- Creep specimen - 0.1 inch dia. gage; annealed 0.023 ( b )

0.025C (NASVF-1) 1 hour at 3270°F at 1 x 10- 5 torr, creep tested
for 500 hours at 1850-2100°F at <1 x 10-8 torr.
Re-annealed 1 hour at 3630°F at 1 x 10 torr
then creep tested additional 460 hours at
1850°F at <1 x 10-8 torr.

(2) Ta-16W-2Re-0.7Hf- Creep specimen - 0.1 inch cia. gage; annealed 0.023 (
b

)

0.025C (NASVF-2) 1 hour at 3630°F at 1 x 10 torr, creep teated
at 1850-2100°F for 1000 hours at <1 x 10

-

torr.

(3) NASVF-2 0.3 inch dia. x 1/2 inch long rod, annealed 0.026
1 hour at 36000 F at 1 x 10-5

(4) NASVF-2 Same as (3) plus 1 hour at 2400°F at 1 x 10- 5 0.020
torr.

(5) NASVF-2 Same as %3) plus 1000 hours at 2400°F at 0.025
<1 x 10

-
torr.

(a) All samples annealed at 1 x 10- 5 torr wrapped with single layer of 0.002 inch
thick tantalum foil and cooled from annealing temperature by backfilling
vacuum chamber with high purity helium gas containing less than 5 ppm total
active impurities.

(b) Carbon content in NASVF-1, Ingot Analysis - 0.024%
Carbon content in NASVF-2, Ingot Analysis - 0.024%
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A. As EB Welded 

As EB Welded Plus 1 Hr. at 3270°F (1800°C) 

I*- 1 inch —M 

Figure 24. Results of Bend Testing Electron Beam Welded 
Ta-13W-1.5Re-0.7Hf-0.025C (NASVF-1) Rod 
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5.0 CONCLUSIONS

Based on the results of this screening investigation, three alloy compositions were selected for

scale-up which should have a good combination of high temperature strength and low temper-

ature ductility. Two of the compositions are carbide containing and are Ta-14W-lRe-0.7Hf-

0.025C and Ta-16W-lRe-0.7Hf-O.025C. The third composition, Ta-14W-1.5Re-0.7Hf-0.015C-

0.015N was selected to take advantage of the nitride precipitation kinetics which were shown

in previous work under Contract NAS 3-2542 to enhance high temperature creep strength.

These three alloys will be melted and evaluated as two inch diameter ingot and the results

will be the topic of a separate report.

Additional conclusions which were drawn from the results of the screening investigation on

the development of high strength tantalum base alloys include the following.

1) The tensile and creep strength of a Ta-lRe-0.7Hf-0.025C matrix increases

monotonically with increasing tungsten content over the range of 8 to 16 atom

percent tungsten.

2) Room temperature ductility decreases significantly as the total solute (W+Re)

exceed 16-17 atom percent.

3) Pronounced morphological changes occurred in the Ta2C precipitate during

aging over the temperature range of 1800-2400°F of solution annealed material.

These changes could not be related to creep behavior.

4) The role of the carbide precipitate in enhancing high temperature creep strength

was not explainable.

5) Electron beam welded joints of a Ta-13W-1.5Re-0.7Hf-0.25C alloyexhibited

room temperature bend ductility after post weld annealing for one hour at

3270°F.
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